A gunn diode is made up of only N-type semiconductor which is typically sandwiched between two metal conductors. The central section is usually lightly doped N– surrounded by heavily doped N+ layers. The central section is N-gallium arsenide whereas the two outer sections undergo epitaxial growth from GaAs with increased doping and higher conductivity.

Consider the oscillator circuit below that includes an N-type gallium arsenide gunn diode:
A voltage applied across the N-type gallium arsenide gunn diode creates a strong electric field across the lightly doped N– layer. As the voltage is increased, conduction increases due to electrons in low energy conduction band. As voltage is increased beyond the threshold of approximately 1 V, electrons move from the lower conduction band to the higher energy conduction band where they no longer contribute to conduction. To put it in other words, as voltage increases, current decreases, a negative resistance condition. The oscillation frequency is determined by the transit time of the conduction electrons, which is inversely related to the thickness of the N– layer. The frequency can be controlled to some extent by embedding the gunn diode into a resonant circuit as illustrated in the circuit above.
Related articles:
Image source: Pexels Smart homes are no longer futuristic. They are already here, changing how…
Thyristors are semiconductor devices that tend to stay ‘ON’ once turned ON, and tend to…
Image source: Freepik Introduction: The Evolution of Connectivity Telecommunications have come a long way since…
Modern manufacturing demands smarter heat treatment. Specifically, factories seek greater precision, energy efficiency, and automation.…
An Expert’s Guide to EV Load Management and NEC Compliance Smart EV charging control architectures…
Frequent power failures due to severe storms, aging grid infrastructure, and other unpredictable natural disasters…
View Comments