Process Plants Instrumentation

What is the Function of a Steam Desuperheater?

Whereas superheated steam offers an excellent source of energy for mechanical power generation, in most cases, steam at greatly reduced temperatures, near saturation, proves a more desirable commodity especially for most heat-transfer applications. Precise temperature control is required to enhance heating efficiency; eliminate unintentional superheat in throttling processes; or to protect the downstream product or apparatus from heat related damage. One technique used to reduce temperature is the installation of a desuperheater. Therefore, a desuperheater is a system that injects a controlled predetermined amount of water into a steam flow to lower the temperature of the steam. The schematic diagram illustrates the controls of a steam desuperheater:

Schematic diagram of controls of a steam desuperheater
Figure 1.0: Schematic diagram of controls of a steam desuperheater

To accomplish its function efficiently, the desuperheater must be designed and selected correctly for the application. A desuperheater integrates with a wide variety of complex thermal and flow dynamic variables to achieve efficiency. As illustrated in the schematic diagram above, the control of the water quantity, and thus the steam temperature, employs a temperature control loop. This loop includes a downstream temperature sensing device, a controller to interpret the measured temperature relative to the desired set point, and the transmission of a proportional signal to water controlling valve/actuator assembly to modulate/control the required quantity of water.

The key factor for the efficient desuperheater operation is to choose the correct design for the respective application.  Desuperheaters are available in different shapes and sizes and employ different energy transfer and mechanical techniques to accomplish the desired performance within the limits of the system environment.

Figure 1.1: Desuperheater Installations  

Some of the physical parameters that influence the performance of a desuperheater system include:

  • Installation orientation.
  • Spray water temperature.
  • Spray water quantity.
  • Pipeline size.
  • Steam velocity.
  • Equipment vs. system turndown.
John Mulindi

John Mulindi is an Industrial Instrumentation and Control Professional with a wide range of experience in electrical and electronics, process measurement, control systems and automation. In free time he spends time reading, taking adventure walks and watching football.

Recent Posts

Control Architectures for Smart EV Charging: Meeting NEC 2023, Demand Response, and Safety Standards

An Expert’s Guide to EV Load Management and NEC Compliance Smart EV charging control architectures…

3 weeks ago

How Residential Battery Backup Protects Your Home During Power Outages

Frequent power failures due to severe storms, aging grid infrastructure, and other unpredictable natural disasters…

4 weeks ago

How Temperature Sensors Are Transforming IoT in Smart Devices

The rise of smart devices and the Internet of Things (IoT) has revolutionised the way…

1 month ago

The Growing Importance of Battery Technology in Sustainable Energy

Battery technology has become essential to the global transition to sustainable energy, fundamentally changing transportation…

2 months ago

Hydraulic System: Function, Components, Advantages & Drawbacks  

Hydraulic systems are built in such way that they are able to move large loads…

3 months ago

The Role of Precision PCB Design in Aerospace Innovation

Image source: Unsplash Innovation in aerospace engineering is accelerating, driven by rising demands for safer,…

3 months ago