Mechatronics, Industrial Control & Instrumentation

RTD 2, 3, 4 Wire Sensor Connections

The resistance temperature devices (RTD) can be connected directly to the controller peripheral amplifiers using 2-wire, 3-wire or 4-wire lead configuration. The wires in all these connections are in shielded cables.

The RTD is usually driven from a constant current source (I) and the voltage drop (V) across the RTD is measured.

RTD 2-wire connection

The 2-wire connection is illustrated in figure 1(a) below:

RTD 2-wire lead configuration
Figure 1(a) RTD 2-wire lead configuration

The RTD 2-wire connection is the simplest and cheapest lead configuration. In this case of 2-wire connection, the voltage drop is measured across the lead wires as well as the RTD; the resistance in the two-lead wires can be significant giving a relatively high degree of error.

RTD 3-wire connection

The 3-wire lead connection is illustrated below:

Figure 1(b) RTD 3-wire lead connection

The RTD 3-wire connection is a compromise between the cost and accuracy. In this connection, a direct return lead from the RTD to the voltmeter is added as shown in figure 1(b) above. The voltage drop δV between the ground connection and the lower RTD connection as well as the voltage drop V between the current source and the lower RTD connection can be measured. If the resistance in each lead to RTD is presumed to be the same, the voltage across the RTD is V –δV correcting for the error caused by the common lead wire. In most cases each lead wire will have the approximately the same resistance, hence this method is accurate enough for most applications.

Related: Temperature transducers

RTD 4-wire connection

4-wire connection is illustrated in figure 1(c) below:

Figure 1(c) RTD 4-wire connection

This RTD 4-wire connection is the most expensive but most accurate lead configuration. In this lead configuration, the voltmeter is connected directly to the RTD as shown in figure 1(c) above and since no current flows in the leads to the voltmeter there is no voltage drop in the measuring leads and an accurate RTD voltage is achieved.

You can also read: Types of Sensors used in Measurement and Process Control

Don’t miss out on key updates, join our newsletter  List

John Mulindi

John Mulindi is an Industrial Instrumentation and Control Professional with a wide range of experience in electrical and electronics, process measurement, control systems and automation. In free time he spends time reading, taking adventure walks and watching football.

View Comments

Recent Posts

Hydraulic System: Function, Components, Advantages & Drawbacks  

Hydraulic systems are built in such way that they are able to move large loads…

3 weeks ago

The Role of Precision PCB Design in Aerospace Innovation

Image source: Unsplash Innovation in aerospace engineering is accelerating, driven by rising demands for safer,…

3 weeks ago

Bittele Electronics: Setting the Pace in Turnkey PCB Assembly

Image source: Freepik From consumer electronics, IoT, automotive, industrial control, healthcare, communication systems to aerospace;…

3 weeks ago

The Role of Industrial and Domestic Biomass Boilers

Image source: Unsplash What is Biomass Energy? Biomass energy, a form of renewable energy derived…

3 weeks ago

The Essential Role of Water Turbines in Harnessing Hydroelectric Power

Hydro Turbine, Image source: Energy Education Understanding Hydroelectric Power Hydroelectric power is one of the…

4 weeks ago

Common Types of Differential Pressure Flowmeters

The term ‘flow’ can generally be applied in three distinct circumstances: Volumetric flow is the…

1 month ago