Electrical & Electronics Measurements

Pulse Generator: Function, Operation & Applications

The Function of a Pulse Generator

A pulse generator is an electronic instrument used to generate pulses for use in different types of electronic applications. Pulse generators are mainly utilized for production of pulses that are used to test applications that involve digital circuits like shift registers, counters, and so forth.

Operation of the Pulse Generator

The diagram below illustrates the working of a pulse generator:

Block diagram illustrating pulse generator operation
Fig: Block diagram illustrating pulse generator operation

In reference to the above diagram, an astable multivibrator generates square waves that are then used to trigger monostable multivibrator, that is, one shot. The pulse repetition rate is set by the square-wave frequency. The one-shot triggers on the leading edge of the square-wave and produces one output pulse each input cycle. The duration of each output pulse is set by the on-time of the one-shot. This can be very short or may come close to the period of the square wave. The attenuator aids in output amplitude control and dc level shifting.

A standard pulse generator will allow the user to select the repetition rate, duration, amplitude and number of output pulses to be output in a given a burst. The most common frequency range is 1 Hz to 50 MHz. The pulse width is adjustable from 10 ns to over 10 ms and the output is variable from 3 mV to 30 V.

Applications of Pulse Generators

Generally, pulse generators are used to generate pulses that are injected into systems or devices under test. While in the device, these generated pulses act as stimulus or clock signal, and are analyzed as they progress through the device confirming the proper operation of the device or pinpointing a fault in the device.

Pulse generators are used widely in digital circuits to test: shift registers, counters, memory circuits, other digital components, systems and subsystems.

Pulse generators are used in drive devices such as lasers, switches, modulators, optical components, etc.

John Mulindi

John Mulindi is an Industrial Instrumentation and Control Professional with a wide range of experience in electrical and electronics, process measurement, control systems and automation. In free time he spends time reading, taking adventure walks and watching football.

View Comments

Recent Posts

Hydraulic System: Function, Components, Advantages & Drawbacks  

Hydraulic systems are built in such way that they are able to move large loads…

2 weeks ago

The Role of Precision PCB Design in Aerospace Innovation

Image source: Unsplash Innovation in aerospace engineering is accelerating, driven by rising demands for safer,…

3 weeks ago

Bittele Electronics: Setting the Pace in Turnkey PCB Assembly

Image source: Freepik From consumer electronics, IoT, automotive, industrial control, healthcare, communication systems to aerospace;…

3 weeks ago

The Role of Industrial and Domestic Biomass Boilers

Image source: Unsplash What is Biomass Energy? Biomass energy, a form of renewable energy derived…

3 weeks ago

The Essential Role of Water Turbines in Harnessing Hydroelectric Power

Hydro Turbine, Image source: Energy Education Understanding Hydroelectric Power Hydroelectric power is one of the…

4 weeks ago

Common Types of Differential Pressure Flowmeters

The term ‘flow’ can generally be applied in three distinct circumstances: Volumetric flow is the…

1 month ago