A pulse generator is an electronic instrument used to generate pulses for use in different types of electronic applications. Pulse generators are mainly utilized for production of pulses that are used to test applications that involve digital circuits like shift registers, counters, and so forth.
The diagram below illustrates the working of a pulse generator:
In reference to the above diagram, an astable multivibrator generates square waves that are then used to trigger monostable multivibrator, that is, one shot. The pulse repetition rate is set by the square-wave frequency. The one-shot triggers on the leading edge of the square-wave and produces one output pulse each input cycle. The duration of each output pulse is set by the on-time of the one-shot. This can be very short or may come close to the period of the square wave. The attenuator aids in output amplitude control and dc level shifting.
A standard pulse generator will allow the user to select the repetition rate, duration, amplitude and number of output pulses to be output in a given a burst. The most common frequency range is 1 Hz to 50 MHz. The pulse width is adjustable from 10 ns to over 10 ms and the output is variable from 3 mV to 30 V.
Generally, pulse generators are used to generate pulses that are injected into systems or devices under test. While in the device, these generated pulses act as stimulus or clock signal, and are analyzed as they progress through the device confirming the proper operation of the device or pinpointing a fault in the device.
Pulse generators are used widely in digital circuits to test: shift registers, counters, memory circuits, other digital components, systems and subsystems.
Pulse generators are used in drive devices such as lasers, switches, modulators, optical components, etc.
Recommended: The Ultimate Guide to Electrical Maintenance
Related articles:
An Expert’s Guide to EV Load Management and NEC Compliance Smart EV charging control architectures…
Frequent power failures due to severe storms, aging grid infrastructure, and other unpredictable natural disasters…
The rise of smart devices and the Internet of Things (IoT) has revolutionised the way…
Battery technology has become essential to the global transition to sustainable energy, fundamentally changing transportation…
Hydraulic systems are built in such way that they are able to move large loads…
Image source: Unsplash Innovation in aerospace engineering is accelerating, driven by rising demands for safer,…
View Comments