Control Systems

Proportional plus Derivative (PD) Control System

Proportional plus derivative (rate) control is a control mode in which a derivative section is added to the proportional controller. This derivative section responds to the rate of change of the error signal, not the amplitude as with the integral control; this derivative action responds to the rate of change the instant it starts. This causes the controller output to be initially larger in direct relation with the error signal rate of change. The higher the error rate of change, the sooner the final control element is positioned to the desired value. The added derivative action reduces initial overshoot of the measured variable, and therefore aids in stabilizing the process sooner.

This control mode is called proportional plus derivative/rate (PD) control because the derivative section responds to the rate of change of the error signal.

Definition of Derivative Control

A device that produces a derivative signal is called a differentiator.

Input versus output relationship of a differentiator
Figure (a) Input versus output relationship of a differentiator

The differentiator provides an output that is directly related to the rate of change of the input and a constant that specifies the function of the differentiation. The derivative constant is expressed in units of seconds and defines the differential controller output

The differentiator acts to transform a changing signal to a constant magnitude signal as illustrated in the figure below:

Figure (b) Derivative control output

Derivative cannot be used alone as a control mode. This is because a steady-state input produces a zero output in a differentiator. If the differentiator was used as a controller, the input signal it would receive is the error signal. A steady-state error corresponds to any number of necessary output signals for the positioning of the final control. Hence a derivative action is combined with proportion action in such a way such that the proportion section output serves as the derivative section output. Proportional plus derivative (rate) controllers take advantage of both proportional and derivative control modes.

As illustrated in Figure (c), the proportional action provides an output proportional to the error. If the error is not a step change, but is slowly changing, the proportional action is slow. Rate or derivative action, when added, provides quick response to the error.

Figure (c) Response of a PD Control

Example of PD Control

Consider the industrial application below using a temperature controller (TC) as a PD controller.

Figure (d) Heat exchange process

The proportional only control mode responds to the decrease in demand, but because of the inherent characteristics of proportional control, a residual offset error remains. Adding the derivative action affects the response by allowing only one small overshot and rapid stabilization to the new control point. Thus, derivative action provides stability to the system, but does not eliminate the offset error.

Figure (e) Effect of disturbance on proportional plus derivative reverse acting controller

Industrial applications of Proportional plus Derivative (PD) Control

Proportional plus derivative control is usually used with large capacity or slow-responding processes such as temperature control. The leading action of the controller output compensates for the lagging characteristics of large capacity slow processes.

Don’t miss out on key updates, join our newsletter  List

The derivative/rate action is not usually used with fast responding processes such as flow control or noisy processes because derivative action responds to any rate or change with error signal, including the noise.

PD controllers are useful with processes which are frequently started up and shut down because they are not susceptible to reset windup which is the main problem with PI controllers.

John Mulindi

John Mulindi is an Industrial Instrumentation and Control Professional with a wide range of experience in electrical and electronics, process measurement, control systems and automation. In free time he spends time reading, taking adventure walks and watching football.

View Comments

Recent Posts

Control Architectures for Smart EV Charging: Meeting NEC 2023, Demand Response, and Safety Standards

An Expert’s Guide to EV Load Management and NEC Compliance Smart EV charging control architectures…

3 weeks ago

How Residential Battery Backup Protects Your Home During Power Outages

Frequent power failures due to severe storms, aging grid infrastructure, and other unpredictable natural disasters…

4 weeks ago

How Temperature Sensors Are Transforming IoT in Smart Devices

The rise of smart devices and the Internet of Things (IoT) has revolutionised the way…

1 month ago

The Growing Importance of Battery Technology in Sustainable Energy

Battery technology has become essential to the global transition to sustainable energy, fundamentally changing transportation…

2 months ago

Hydraulic System: Function, Components, Advantages & Drawbacks  

Hydraulic systems are built in such way that they are able to move large loads…

3 months ago

The Role of Precision PCB Design in Aerospace Innovation

Image source: Unsplash Innovation in aerospace engineering is accelerating, driven by rising demands for safer,…

3 months ago