Telecommunication Systems

Frequency Synthesizer – Features, Operation & Applications

Frequency synthesis is a technique of producing a range of frequencies with crystal-controlled stability. A frequency synthesizer uses phase-locked loop (PLL) to generate output frequencies over a wide range. The typical range is from 1 MHz to 160 MHz.

Block diagram of a frequency synthesizer
Fig: Block diagram of a frequency synthesizer

As illustrated in the block diagram above, the key components of the frequency synthesizer are:

  • Crystal oscillator
  • Phase detector
  • Low-pass filter
  • Voltage controlled-oscillator (VCO)
  • Square-wave circuit
  • Divide-by-N counter

The Operation of the Frequency Synthesizer

The output of the crystal oscillator, i.e. the reference frequency fr, is fed into one input of a phase detector. The other input of a phase detector has another square-wave applied as illustrated in the diagram above. The frequencies of these two square waves are identical but there is a phase difference (Φ) between them.

The output of the phase detector is a pulse waveform with pulse width controlled by the phase difference. The output of the phase detector is applied to the low-pass filter which converts it into a dc voltage, E. This dc voltage, E is utilized as the control voltage for the voltage-controlled oscillator (VCO) and it defines the output frequency of VCO. The output of VCO is fed to a circuit that converts it into a square wave for triggering a digital divide-by-N counter, which divides the VCO frequency by a number set by a bank of switches. These switches may be push buttons with digital readouts or they may be thumb-wheel type which indicates the position numerically. The switches are connected in such a manner that the displayed number is the factor N by which the output frequency is divided before being applied to the phase detector. The switches allow the user to obtain frequency which is any integer multiple of the crystal oscillator frequency.

Applications of Frequency Synthesizers

Frequency synthesizers are commonly used in test equipment, communication systems and radio channel selection.

John Mulindi

John Mulindi is an Industrial Instrumentation and Control Professional with a wide range of experience in electrical and electronics, process measurement, control systems and automation. In free time he spends time reading, taking adventure walks and watching football.

View Comments

Recent Posts

Hydraulic System: Function, Components, Advantages & Drawbacks  

Hydraulic systems are built in such way that they are able to move large loads…

2 weeks ago

The Role of Precision PCB Design in Aerospace Innovation

Image source: Unsplash Innovation in aerospace engineering is accelerating, driven by rising demands for safer,…

3 weeks ago

Bittele Electronics: Setting the Pace in Turnkey PCB Assembly

Image source: Freepik From consumer electronics, IoT, automotive, industrial control, healthcare, communication systems to aerospace;…

3 weeks ago

The Role of Industrial and Domestic Biomass Boilers

Image source: Unsplash What is Biomass Energy? Biomass energy, a form of renewable energy derived…

3 weeks ago

The Essential Role of Water Turbines in Harnessing Hydroelectric Power

Hydro Turbine, Image source: Energy Education Understanding Hydroelectric Power Hydroelectric power is one of the…

4 weeks ago

Common Types of Differential Pressure Flowmeters

The term ‘flow’ can generally be applied in three distinct circumstances: Volumetric flow is the…

1 month ago