Process Plants Instrumentation

Demand Mode vs. Continuous Mode Safety Function

Demand Mode Safety Function

Demand mode safety function is where a specified action is taken in response to process conditions or other demands. In the event of a dangerous failure of the SIF, a potential hazard only occurs in the event of a failure of the process of BPCS (Basic Process Control System).

Demand mode safety function is characterized by the following features:

  • It is typically separate from the process.
  • Failure of the safety function results in loss of protection, but is not itself hazardous.
  • The frequency of demands placed upon it is low, less than once per year.

Demand mode safety functions include:

  • Process shutdown (PSD).
  • Emergency Shutdown (ESD).
  • High Integrity Pressure Protection Systems (HIPPS).

Continuous Mode Safety Function

Continuous mode safety function is where in the event of a dangerous failure of the SIF, a potential hazard will occur without further failure unless action is taken to prevent it.

Continuous mode safety function is characterized by the following:

  • It typically offers some control function.
  • Failure of the safety function usually leads to a hazardous situation.
  • The frequency of demands placed upon it is high, more than once per year even continuous.

Continuous mode safety functions typically include burner management and turbine control systems.

The figure above shows a burner management system (BMS) which is used to control a furnace. The system is used to control the fuel gas and combustion air into the furnace and monitors the burner flame with flame detectors. On condition of flame out, the BMS must shut OFF the fuel gas to prevent a build-up and possible explosion. In the same way, before lighting, the burner must be purged to ensure that gas has not accumulated within the furnace due to seepage past the valves or control failures. Therefore, the BMS must provide control through the start-up sequence, purging adequately and it must also monitor operation after lighting. This system illustrates a continuous mode safety function.

John Mulindi

John Mulindi is an Industrial Instrumentation and Control Professional with a wide range of experience in electrical and electronics, process measurement, control systems and automation. In free time he spends time reading, taking adventure walks and watching football.

Recent Posts

Control Architectures for Smart EV Charging: Meeting NEC 2023, Demand Response, and Safety Standards

An Expert’s Guide to EV Load Management and NEC Compliance Smart EV charging control architectures…

3 weeks ago

How Residential Battery Backup Protects Your Home During Power Outages

Frequent power failures due to severe storms, aging grid infrastructure, and other unpredictable natural disasters…

4 weeks ago

How Temperature Sensors Are Transforming IoT in Smart Devices

The rise of smart devices and the Internet of Things (IoT) has revolutionised the way…

1 month ago

The Growing Importance of Battery Technology in Sustainable Energy

Battery technology has become essential to the global transition to sustainable energy, fundamentally changing transportation…

2 months ago

Hydraulic System: Function, Components, Advantages & Drawbacks  

Hydraulic systems are built in such way that they are able to move large loads…

3 months ago

The Role of Precision PCB Design in Aerospace Innovation

Image source: Unsplash Innovation in aerospace engineering is accelerating, driven by rising demands for safer,…

3 months ago