Process Plants Instrumentation

Demand Mode vs. Continuous Mode Safety Function

Demand Mode Safety Function

Demand mode safety function is where a specified action is taken in response to process conditions or other demands. In the event of a dangerous failure of the SIF, a potential hazard only occurs in the event of a failure of the process of BPCS (Basic Process Control System).

Demand mode safety function is characterized by the following features:

  • It is typically separate from the process.
  • Failure of the safety function results in loss of protection, but is not itself hazardous.
  • The frequency of demands placed upon it is low, less than once per year.

Demand mode safety functions include:

  • Process shutdown (PSD).
  • Emergency Shutdown (ESD).
  • High Integrity Pressure Protection Systems (HIPPS).

Continuous Mode Safety Function

Continuous mode safety function is where in the event of a dangerous failure of the SIF, a potential hazard will occur without further failure unless action is taken to prevent it.

Continuous mode safety function is characterized by the following:

  • It typically offers some control function.
  • Failure of the safety function usually leads to a hazardous situation.
  • The frequency of demands placed upon it is high, more than once per year even continuous.

Continuous mode safety functions typically include burner management and turbine control systems.

The figure above shows a burner management system (BMS) which is used to control a furnace. The system is used to control the fuel gas and combustion air into the furnace and monitors the burner flame with flame detectors. On condition of flame out, the BMS must shut OFF the fuel gas to prevent a build-up and possible explosion. In the same way, before lighting, the burner must be purged to ensure that gas has not accumulated within the furnace due to seepage past the valves or control failures. Therefore, the BMS must provide control through the start-up sequence, purging adequately and it must also monitor operation after lighting. This system illustrates a continuous mode safety function.

John Mulindi

John Mulindi is an Industrial Instrumentation and Control Professional with a wide range of experience in electrical and electronics, process measurement, control systems and automation. In free time he spends time reading, taking adventure walks and watching football.

Recent Posts

Hydraulic System: Function, Components, Advantages & Drawbacks  

Hydraulic systems are built in such way that they are able to move large loads…

3 weeks ago

The Role of Precision PCB Design in Aerospace Innovation

Image source: Unsplash Innovation in aerospace engineering is accelerating, driven by rising demands for safer,…

3 weeks ago

Bittele Electronics: Setting the Pace in Turnkey PCB Assembly

Image source: Freepik From consumer electronics, IoT, automotive, industrial control, healthcare, communication systems to aerospace;…

3 weeks ago

The Role of Industrial and Domestic Biomass Boilers

Image source: Unsplash What is Biomass Energy? Biomass energy, a form of renewable energy derived…

3 weeks ago

The Essential Role of Water Turbines in Harnessing Hydroelectric Power

Hydro Turbine, Image source: Energy Education Understanding Hydroelectric Power Hydroelectric power is one of the…

4 weeks ago

Common Types of Differential Pressure Flowmeters

The term ‘flow’ can generally be applied in three distinct circumstances: Volumetric flow is the…

1 month ago