Let’s consider the functional diagram below:
The D/A converter outputs a voltage directly related to the potentiometer position. However, the D/A converter’s output current is limited and not enough to drive a motor. A power operational amplifier (op-amp) circuit, configured as a noninverting amplifier can drive the motor at the higher currents required. In effect, the power amp will serve as a buffer between the D/A converter and the motor.
The circuit below shows the components used along with their interconnections.
The OPA 547 can be powered by a bipolar (±) 9 V supply instead of a standard bipolar 15 V supply. With an input resistor of 10 kꭥ and a feedback resistor of 1 kꭥ, the power amp circuit has a gain of 1.1, therefore, the voltage from the D/A converter is not amplified a lot, but the circuit is able to source ample current to the dc motor.
You can also read: Pulse Width Modulation (PWM) Speed Control of a DC motor
Battery technology has become essential to the global transition to sustainable energy, fundamentally changing transportation…
Hydraulic systems are built in such way that they are able to move large loads…
Image source: Unsplash Innovation in aerospace engineering is accelerating, driven by rising demands for safer,…
Image source: Freepik From consumer electronics, IoT, automotive, industrial control, healthcare, communication systems to aerospace;…
Image source: Unsplash What is Biomass Energy? Biomass energy, a form of renewable energy derived…
Hydro Turbine, Image source: Energy Education Understanding Hydroelectric Power Hydroelectric power is one of the…